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1 Introduction

The physical and geometrical properties of fractal clusters attracted a persis-
tently growing attention of researchers in the past two decades.1–3 The reason
for this is two-fold. First, it turns out that, in many cases, natural processes of
aggregation of small particles lead to formation of fractal clusters rather than
regular structures.4,5 Examples include aggregation of colloidal particles in so-
lutions,6–10 formation of fractal soot from little carbon spherules in the process
of incomplete combustion of carbohydrates,11–16 and growth of cold-deposited
self-affine films.17,18 The second reason is that the properties of fractal clus-
ters are very rich in physics and different from those of either bulk material,
or isolated particles (monomers).19 In this chapter we focus on theoretical
and computational approaches to calculating optical characteristics of fractal
clusters, such as the optical cross sections, and review some of the results.

The most simple and extensively used model for fractal clusters is a collec-
tion of identical spherically symmetrical particles (monomers) that form a self-
supporting geometrical structure. It is convenient to think of the monomers
as of identical rigid spheres that form a bond on contact. A cluster is self-
supporting if each monomer is attached to the rest of the cluster by one or
more bonds. Fractal clusters are classified as geometrical (built as a result
of a deterministic iteration process) or random. Most clusters in nature are
random.

The fractal dimension of a cluster, D, can be found from the relation
between the number of particles in a cluster, N , and its gyration radius, Rg:

N = (Rg/R0)
D , (1)

where R0 is a constant of the order of the minimum separation between
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monomers. Another definition of the fractal dimension utilizes the pair density-
density correlation function 〈ρ(r)ρ(r + R)〉:

〈ρ(r)ρ(r + R)〉 ∝ RD−3 if R0 ¿ r ¿ Rg . (2)

Typically, both definitions give very close values for the fractal dimension.
However, a difference can be seen in very large clusters, when multiscaling can
be present.20,21

The major models for computer simulation of random fractal clusters are
the cluster-cluster aggregation (Meakin model),22,23 the diffusion limited ag-
gregation (Witten-Sander model),24 and the percolation model.25 The first
two models involve aggregation processes and, therefore, are dynamical. The
third model is static in nature. The majority of natural clusters can be ac-
curately described by one of these models with some variations. More details
about the aggregation algorithms as well as further references can be found in
the reviews by Jullien and Botet.4,5

Random fractal clusters are very complex systems built from simple ele-
mentary blocks. It is important to emphasize that the rich and complicated
properties of fractal clusters are determined by their geometrical structure
rather than by the structure of each elementary block (monomer). In the for-
mulation of a typical problem in optics of fractal clusters, the properties of
monomers and the law of their interaction with the incident field and with
each other are known, while the properties of a cluster as a whole must be
found.

The early advances in the study of nonresonant scattering of light and X-
rays by fractal clusters were due to Bale and Schmidt,26 Berry and Percival27

and Martin and Hurd.28 Since that, the theory of nonresonant scattering by
fractals was developed in great detail.12,13,15,21,29–36

The nontrivial fluctuative nature of fractals is fully manifested when one
considers the resonant optical properties of fractal clusters. The foundations of
the theory of resonant interaction of light with fractals were built by Butenko,
Shalaev and Stockman,37,38 Markel, Muratov, Stockman and George,39 Sha-
laev, Botet and Jullien40 and Stockman, George and Shalaev.41 Localization
of light and strong enhancement of local fields in fractals were intensively
studied37–39,42–51 As was originally predicted,38,42,44 strong fluctuations of
local fields in fractals result in giant enhancement of nonlinear susceptibili-
ties.19,46,52 A 106 enhancement of the degenerate four-wave mixing in fractal
silver clusters was observed experimentally.53,54 Wavelength- and polarization-
selective spectral holes in the absorption spectra of fractal metal clusters in
colloid solutions were induced by intense laser pulses.6,9, 55 Other strongly en-
hanced nonlinearities in absorption and refraction by fractal clusters were also
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observed.10

Practically, all the existing analytical solutions in optics of random fractal
clusters are approximate, and the limits of their applicability are usually not
obvious a priori. In many instances, such solutions don’t exist at all. This
makes numerical methods to be of great importance. While many theoretical
methods, such as various scaling theories,39–41,44,47,49,50,56,57 explicitly make
use of the fractal geometry of clusters, most computational methods are de-
signed for clusters of arbitrary geometry. However, when one is interested in
performance characteristics of a numerical method, such as convergence, accu-
racy or accumulation of the round off errors, the fractal geometry can become
important.

2 Basic Theoretical Approaches

In this Section we consider a cluster of N monomers located in the points
ri, i = 1, ..., N and interacting with an incident plane monochromatic wave of
the form

Einc(r, t) = E0 exp(iωt− ik · r) . (3)

The factor exp(iωt) is common for all time varying fields and will be omitted
below.

2.1 Coupled Dipoles

In this model, each monomer in a cluster is considered to be a point dipole with
polarizability α, located at the point ri (at the center of the respective spherical
monomer). The dipole moment of the ith monomer, di, is proportional to the
local field at the point ri which is a superposition of the incident field and all
the secondary fields scattered by other dipoles. Therefore, the dipole moments
of the monomers are coupled to the incident field and to each other as described
by the coupled dipole equation (CDE):

di = α



Einc(ri) +
N
∑

j 6=i

Ĝ(ri − rj)dj



 . (4)

Here the term Ĝ(ri−rj)dj gives the dipole radiation field created by the dipole

dj at the point ri, and Ĝ(r) is the regular part of the free space dyadic Green’s
function:

Gαβ(r) = k3
[

A(kr)δαβ +B(kr)rαrβ/r
2
]

, (5)
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A(x) = [x−1 + ix−2 − x−3] exp(ix) , (6)

B(x) = [−x−1 − 3ix−2 + 3x−3] exp(ix) , (7)

where Ĝd = Gαβdβ , the Greek indices stand for the Cartesian components

of vectors and summation over repeated indices is implied. The operator Ĝ
is completely symmetrical: Ĝ(r) = Ĝ(−r), Gαβ(r) = Gβα(r). While the
monomer size is assumed to be small compared to the wavelength, the overall
cluster size is, in general, arbitrary. That is why the near-, intermediate- and
far-zone terms are included in formulas (6),(7).

The CDE is a system of 3N linear equations that can be solved to find the
dipole moments di. The scattering amplitude is expressed through the dipole
moments as

f(k′) = k2
N
∑

i=1

[

di − (di · k′)k′/k2
]

exp(−ik′ · ri) , (8)

where k′ is the scattered wave vector (which gives the direction of scattering)
and |k′| = |k|. The cross sections of extinction, scattering and absorption can
be found from the optical theorem:

σe =
4π

k

Im[f(k) ·E?
0]

|E0|2
=

4πk

|E0|2
Im

N
∑

i=1

di ·E∗
inc(ri) , (9)

dσs
dΩ

= |f(k)|2 ; σs =

∫

|f(k)|2dΩ , (10)

σa = σe − σs . (11)

It can be shown58 by direct integration according to (10) over the spatial
angles Ω, and with the use of equations (4)-(8), that the integral scattering
and absorption cross sections can be expressed through the dipole moments as

σs =
4πk

|E0|2
N
∑

i=1

{

Im [di ·E∗
inc(ri)]− ya|di|2

}

, (12)

σa =
4πk

|E0|2
ya

N
∑

i=1

|di|2 , (13)
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ya = −Im
(

1

α

)

− 2k3

3
≥ 0 . (14)

Note that the constant ya is non-negatively defined59 for any physically rea-
sonable α. The ratio 3ya/2k

3 characterizes the relative strength of absorption
by a single isolated monomer. However, it was shown59 that the resonance
absorption of a cluster can be large even when 3ya/2k

3 ¿ 1.

2.1.1 Polarizability of a Monomer

In order to solve the CDE (4), one needs to specify not only the location of
monomers, but also the polarizability α, which plays the role of the coupling
constant. In this Subsection we discuss the methods for defining α.

The CDE was originally proposed by Purcell and Pennypacker60 for nu-
merical analysis of scattering and absorption of light by nonspherical dielectric
particles. In the formulation of Purcell and Pennypacker, a dielectric parti-
cle is represented by an array of point dipoles placed on a cubic lattice and
restricted by the surface of the particle. The polarizability of an elementary
dipole, α, is defined by the Clausius-Mossotti relation. Equivalently, it is equal
to the polarizability of a little sphere of such a radius that the total volume of
all the spheres is equal to the total volume of the particle under investigation.
To satisfy this equality, the following relation between the lattice period, a,
and the radius of a sphere, Rm, must hold: a3 = 4πR3

m/3. Note that two
spheres of the radius Rm placed in the neighboring sites of a lattice with the
period a would geometrically intersect because a/Rm = (4π/3)1/3 ≈ 1.612 < 2.
The polarizability of an elementary dipole in the Purcell-Pennypacker model
is given by the Lorenz-Lorentz formula60 with the correction for radiative re-
action introduced later by Draine:61

α =
αLL

1− i(2k3/3)αLL
, (15)

αLL = R3
m

ε− 1

ε+ 2
, (16)

where ε is the dielectric constant of the material and αLL is the Lorenz-Lorentz
polarizability without the radiation correction. Note that the polarizability
written in the form (15) provides the positive value of ya (14). More sophis-
ticated formulas for α, containing several first terms in the expansion of the
polarizability with respect to the parameter kRm, can be found in papers by
Lakhtakia,62,63 Draine and Goodman64 and in the references therein.
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In the case of fractal clusters the situation is different from the described
above. Instead of the imaginary spheres, we have real touching spherical
monomers that form a cluster. Of course, these monomers cannot intersect
geometrically. Let the radius of the real monomers that can be seen exper-
imentally be Rexp, and the distance between two neighboring monomers be
aexp; for touching spheres, aexp/Rexp = 2. However, it was shown both the-
oretically65,66 and experimentally67 that the CDE (4) with aexp/Rexp = 2,
α given by (15) and (16), a = aexp and Rm = Rexp yields incorrect results.
The reason for this is that the dipole field generated by one monomer inside
the other one is not homogeneous; it is much stronger near the point where
the monomers touch than in the centers of the neighboring monomer. (Strictly
speaking, when the external field is not homogeneous inside a dielectric sphere,
one cannot restrict consideration to only dipole moments; the coupled mul-
tipole approach is discussed below). Effectively, by replacing two touching
spheres by two point dipoles located in their centers, we underestimate the
strength of their interaction.

To compensate the above fact, a model for a fractal cluster was intro-
duced68 in which neighboring spheres were allowed to intersect geometrically.
The radius of these spheres, as well as the distance between two neighbor-
ing monomers, are chosen to be different from the experimental ones: Rm 6=
Rexp, a 6= aexp, but it is required that the ratio a/Rm is equal to (4π/3)1/3 ≈
1.612, the same as in the Purcell and Pennypacker model.60 Note that a close
value for the above ratio, a/Rm ≈ 1.688, was obtained from the condition that
an infinite linear chain of polarizable spherules has the correct depolarization
coefficient.69 The second equation for Rm and a can be obtained from the
optically important condition that the model cluster has the same fractal di-
mension, radius of gyration and total volume as the experimental one. The two
equations can be satisfied simultaneously for nontrivial fractal clusters (with
D < 3) and lead to

Rm = Rexp(π/6)
D/[3(3−D)] ; N = Nexp(6/π)

D/(3−D) , (17)

whereNexp andN are the number of monomers in the original and in the model
cluster, respectively. The invariance of the radius of gyration, Rg, follows from
(1) and (17).

The above model was shown to be in a good agreement with experimental
spectra of fractal cluster.68 However, for the practical application of this model,
one must take into account that the dielectric constant ε used in formulas
(15),(16) is usually tabulated for bulk samples. When very small monomers
are considered, a correction to ε connected with the finite-size effects can be
significant.68
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2.1.2 Eigenmode Expansion

The CDE (4) takes an elegant form when written in matrix notations. We
introduce a linear complex vector space C3N and 3N -dimensional vectors of
the dipole moments and incident fields according toa |d〉 = (d1,d2, ...,dN ) and
|E〉 = (Einc(r1),Einc(r2), ...,Einc(rN )). We also define an orthonormal basis
|iα〉 in C3N , such that the Cartesian components of the dipole moments are
expressed in this basis as diα = 〈iα|d〉. The linear operator W acts on the
vector of dipole moments |d〉 according to the rule: 〈iα|W|d〉 =∑

βj Gαβ(ri−
rj)djβ . Then Eq. (4) can be written as:

|d〉 = α (|E〉+W|d〉) (18)

and the expressions for the optical cross sections acquire the form:

σe =
4πk

|E0|2
Im〈E|d〉 , (19)

σa =
4πkya
|E0|2

〈d|d〉 . (20)

The interaction matrix W is complex and symmetrical, and, consequently,
non-Hermitian. Therefore, its eigenvectors are not orthogonal, and, moreover,
may not form a complete basis in C3N . However, it can be shown58 that the
eigenvectors are linearly independent (and, therefore, form a basis) if W is
not degenerate, or if the nature of its degeneracy is “geometrical” (due to a
certain symmetry of the cluster under consideration) rather than “random”.
In most practical cases, we can define a complete basis of eigenvectors, |n〉,
corresponding to the eigenvectors wn:

W|n〉 = wn|n〉 . (21)

For complex symmetrical matrices, the orthogonality rule (〈m|n〉 = δmn) is
replaced by58

〈m̄|n〉 = 0 if m 6= n , (22)

where bar denotes complex conjugation of all elements of a vector. Thus, |n〉
denotes a column vector, 〈n| denotes a row vector with the complex conjugated
elements, and 〈n̄| denotes a row vector with exactly the same elements as |n〉.

aFrom this point, we will use Roman letters to denote 3N-dimensional vectors and 3N ×
3N-dimensional matrices, to distinguish them from scalars that are typeset in italics and
usual 3-dimensional vectors typeset in bold letters.
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We adopt the usual normalization of the eigenvectors, 〈n|n〉 = 1, but 〈n̄|n〉 is
not equal to unity and can be, in general, complex.

The representation of the unity operator in the basis |n〉 is

I =

3N
∑

n=1

|n〉〈n̄|
〈n̄|n〉 . (23)

The eigenvector expansion for the solution to the CDE, |d〉, can be easily
obtained with the use of the above equality:

|d〉 =
3N
∑

n=1

|n〉〈n̄|E〉
〈n̄|n〉(1/α− wn)

. (24)

Equations (19),(20), (24) give the general form of the dependence of the
solutions to the CDE and the optical cross sections on the polarizability α.
While the direct numerical application of the eigenvector expansion may be
not practical (except for the quasistatic limit, see Section 2.1.3 below), it is
useful for analysis of different approximations.

The following two exact properties58 of the eigenvalues of the CDE can be
useful for assessment of accuracy of different numerical methods for diagonal-
ization of W:

3N
∑

n=1

wn = 0 ; −2k3/3 ≤ Imwn ≤ (3N − 1)2k3/3 . (25)

2.1.3 Quasistatic Approximation

If not only the monomers, but the whole cluster is small compared to the
incident wavelength λ = 2πc/ω, one can neglect the intermediate- and far-zone
terms in the interaction operator (5)-(7). Therefore, the matrix W becomes
real and Hermitian:

〈iα|W(0)|jβ〉 = −δαβ |ri − rj |2 + 3(riα − rjα)(riβ − rjβ)
|ri − rj |5

, (26)

where W(0) is the interaction matrix in the quasistatic limit. Analogously, the
exponential factor exp(ik · ri) can be set to unity in the expression for the
incident wave (3). The quasistatic free term |E(0)〉 is defined by 〈iα|E(0)〉 =
E0α.
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The quasistatic eigenvectors, which we denote |n(0)〉, become orthogonal
and real. Moreover, as can be easily seen from equation (5), the eigenvectors

and the corresponding real eigenvalues, w
(0)
n , do not depend on ω.

Now the eigenvector expansion for the solution of the CDE takes the form

|d〉 =
3N
∑

n=1

|n(0)〉〈n(0)|E(0)〉
1/α− w(0)

n

(27)

and can be effectively utilized in numerical calculations. Indeed, the only
source of the dependence on the optical frequency ω in (27) is α = α(ω). The
eigenvectors and the eigenvalues depend only on the geometry of a particular
cluster. This means that it is sufficient to diagonalize the interaction matrix
W(0) just once, and then the solution for any frequency can be obtained by a
simple summation according to (27).

The quasistatic approximation can be formulated either in the strong or
in the weak form. The strong form is obtained by formally setting k = 0 in
formulas (5)-(7). In this approximation, extinction and absorption cross sec-
tions are equal, as follows from formulas (14), (19),(20) and the exact relation
Im〈E(0)|d〉 = −Im(1/α)〈d|d〉 that can be found39 with the use of (27):

σe = σa =
4πk

|E0|2
Im

3N
∑

n=1

|〈E(0)|n(0)〉|2

1/α− w(0)
n

. (28)

Consequently, the scattering cross section is zero in the strong form of the
approximation. Physically, the strong form is valid when the absorption pa-
rameter 3ya/2k

3 is large, which means that absorption is much larger than
scattering.

The strong form of the quasistatic approximation is inadequate for de-
scription of scattering. The intuitive idea that the scattering cross section
is proportional to the square modulus of the total dipole moment of a clus-
ter (which can be calculated in the assumption that k = 0) was shown to be
incorrect.58 Also, the strong form of the quasistatic approximation breaks dra-
matically even for the absorption cross section when the parameter 3ya/2k

3 is
not large enough. Although it may seem that the above parameter is always
large for small monomers (proportional to (λ/Rm)3), analysis of formulas (14)-
(16) shows that this might be not the case when Imε/|ε − 1|2 ¿ 1. The last
inequality can hold either for highly transparent materials (Imε ≈ 0), or for
materials with large |ε− 1|, such as metals.

In the weak form of the quasistatic approximation, one can still use the
eigenvectors |n(0)〉, but it is necessary to keep a few first terms of the expansion
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of wn and |E〉 in terms of the powers of k. The expansion of the eigenvalues
can be done with the use of the standard perturbation theory58 using the
orthonormal set of |n(0)〉 as an unperturbed basis. The results (in the first
order of the perturbation theory) are summarized below:

wn = w(0)
n + i

2k3

3

(

|Dn|2 − 1
)

, (29)

where Dn is the total dipole moment of the nth eigenmode defined by

Dnα =

N
∑

i=1

〈iα|n(0)〉 . (30)

The expansion of the free term is trivial:

〈iα|E〉 = E0α [1 + i(k · ri)] . (31)

It is important to keep the second term in expansion (31) in the case of “anti-
symmetrical states”,58 when 〈E(0)|n(0)〉 = 0.

Finally, the expressions for the optical cross sections are

σa =
4πk

|E0|2
3N
∑

n=1

|〈E|n(0)〉|2 ya
|1/α− wn|2

, (32)

σs =
4πk

|E0|2
3N
∑

n=1

|〈E|n(0)〉|2 2k
3/3 + Imwn

|1/α− wn|2
=

8πk4

3|E0|2
3N
∑

n=1

|〈E|n(0)〉|2 |Dn|2
|1/α− wn|2

.

(33)

As follows from the analysis of the scattering cross section (33), a cluster
cannot be replaced by a single particle with an effective total dipole moment
Dtot =

∑

i di, even when the cluster size is much smaller than λ. Instead,
different eigenmodes scatter independently, without mutual interference. The
classical relation σs = 8πk4|Dtot|2/3|E0|2 holds if only one eigenmode can
be effectively excited, as in the case of a homogeneous distribution of a large
number of monomers inside a spherical volume.

2.1.4 Born Approximation and Mean Field Theories

The Born expansion for the solution |d〉 can be obtained by iterating equation
(18):70,71
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|d〉 = α

∞
∑

k=0

(αW)k|E〉 . (34)

It can be easily verified that expansion (34) converges to the exact solution
(24) if |αwn| < 1 ∀n.71

A rough estimate of the boundaries of the eigenvalues of W can be made
using the Gershgorin theorem which states that each eigenvalue of a matrix
A = {aij} lies in at least one of the Gershgorin disks |z − aii| <

∑

j 6=i |aij | in
the complex z-plane. It should be noted that the interaction matrix W has
zero diagonal elements and, therefore, its Gershgorin disks are all concentric.
An estimate of the Gershgorin boundaries can be done with the use of a fractal
density distribution function, replacing the above summation by integration.
The convergence of the Born expansion can strongly depend on the fractal
dimension and the cluster size. Especially, this is important when the complete
interaction operator (5)-(7) is used. On the other hand, in the quasistatic limit
the bounds for eigenvalues are typically independent of the cluster size ifD < 3.
This is explained by the fact that the static dipole field is integrable with
any reasonable fractal density distribution function at large r. For example,
quasistatic calculations68 for 3-dimensional lattice cluster-cluster aggregates
with the lattice period a showed that max(|a3wn|) ≈ 6.

The first Born approximation can be used when |αwn| ¿ 1 ∀n. Then
|d〉 = α|E〉. Using 〈E|E〉 = N |E0|2, we find that σe = 4πkN Imα and σa =
4πkyaN |α|2, as one would expect for a collection of non-interacting monomers.
Although the integral scattering cross section is given by a formula for N inde-
pendent scatterers, σs = (8πk4/3)N |α|2, the differential cross section carries
information about the geometrical structure of a cluster. Indeed, as follows
from (8) and (10), the differential scattering cross section is proportional to
the the function I(q), known as the structure factor:13,28

dσs
dΩ
∝ I(q) =

∣

∣

∣

∣

∣

N
∑

i=1

exp (iq · ri)
∣

∣

∣

∣

∣

2

; q = k− k′ . (35)

For clusters that are spherically symmetrical on average, the structure factor
can be averaged over spatial rotations:

I(q) = N +N(N − 1)φ2(q) ; φ2(q) =

∫ ∞

0

p2(r)
sin qr

qr
dr , (36)

where the horizontal line denotes ensemble averaging and p2(r) is the probabil-
ity density to find two different monomers in a cluster separated by the distance
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r. As follows from (2), p2(r) in fractal clusters has a scaling behavior in the
intermediate asymptote region R0 ¿ r ¿ Rg: p2(r) ∝ rD−1. If D < 2 and
q À 1/Rg, the integral in (36) converges at the upper limit while r is still much

smaller than Rg to produce the well-known result I(q) = N 2(1/N + c/qD),
where c is a constant depending on D. It was also shown that the dispersion of
the average scattered intensity, 〈I2〉 − 〈I〉2, can be expressed similarly to (36)
with the use of the fourth-order density correlation function.21,36

The mean-field approximation proposed for optical scattering by fractal
clusters by Berry and Percival27 is physically distinct from the Born expansion,
but is very similar mathematically to the first Born approximation. In the
mean-field theory, interaction between monomers can be arbitrarily strong and
infinite order of multiple scattering is allowed. The main assumption of the
mean-field approximation is that the ensemble average of the term W|d〉 in
equation (18) can be performed as W|d〉 = W |d〉. In other words, W and |d〉
are assumed to be statistically independent.

For an ensemble of clusters that are spherically symmetrical on average,
W = Q, where Q is a scalar, because there is no selected direction in space.
Performing an ensemble averaging of equation (18), we obtain:

|d〉 = α|E〉
1−Qα . (37)

The above expression is similar to the first term in the Born expansion for
|d〉 (34), except for the constant factor (1−Qα)−1. The integral optical cross
sections are different in the mean-field approximation from those in the first
Born approximation, but the dependence of the scattered intensity on q =
|k−k′| is exactly the same. Comparison of formula (37) with the exact solution
(24) reveals that the mean-field approximation is equivalent to the assumption
that all the eigenvalues of W are equal: wn = Q, which, in turn, is possible
only if W is a scalar.

When |Qα| is not small, multiple scattering is important in a cluster. Berry
and Percival showed by averaging W with a fractal distribution function27

that the character of multiple scattering is distinctly different when D < 2
and D > 2. In the first case, multiple scattering is negligibly small if kRm

is much smaller than unity for any cluster size. Physical interpretation of
this fact is that a cluster with D < 2 is always optically transparent. When
D > 2, multiple scattering becomes important if N ∼ 1/(kRm)D/(D−2), or,
equivalently, Rg ∼ Rm/(kRm)D−2.
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2.2 Coupled Multipoles vs Coupled Dipoles

The fact that higher multipolar modes must be taken into account when the
interacting monomers are close to each other was noted by Gerardy and Aus-
loos,65 Sansonetti and Furdyna67 and Claro.66,72,73 As was mentioned in
Section 2.1.1, the point dipole approximation is inadequate for description
of touching spheres. The reason for this is that even if the wavelength of the
incident radiation is infinite, the spheres themselves induce highly inhomoge-
neous fields inside each other which, in turn, excite all the higher multipole
moments. It is also incorrect to assume that the fields that act on the point
dipoles in the coupled dipoles model are the same as in the centers of the
respective spherules; the dipole approximation underestimates the interaction
strength between two neighboring monomers.

To overcome the limitations of the coupled dipole approximation, an ap-
proach for rigorous numerical solution of the electromagnetic problem of an
agglomerate of dielectric spheres interacting with an incident wave and each
other has been developed.65,66,72–79 We will refer to this approach as to the
coupled multipole method. The essence of this method is to expand the EM
field inside each sphere, and the field scattered by each sphere, in vector spher-
ical harmonics, and to match the boundary condition on all surfaces of discon-
tinuity. Below, we summarize briefly the mathematical formalism of coupled
multipoles.

The fields induced inside the ith sphere, E
(int)
i (r), and scattered by the ith

sphere, E
(scatt)
i (r), can be always expanded in the series involving the vector

spherical harmonics, M
(k)
mn(r) and N

(k)
mn(r), where n takes the integer values

from 1 to infinity, m takes the integer values from −n to n, and the superscript
k denotes the type of Bessel function which governs the radial dependence
of the corresponding harmonic. In accordance with the commonly accepted
convention, k = 1 corresponds to the spherical Bessel function of the first kind
jn, k = 2 - to the spherical Bessel function of the second kind yn, and k = 3, 4

- to the spherical Hankel functions of the first and the second kind, h
(1)
n and

h
(2)
n , respectively. A comprehensive review of the vector spherical harmonics

and their properties can be found in the book by Bohren and Huffman.80 The
expansion for the scattered and internal fields has the following form:

E
(scatt)
i (r) =

∞
∑

n=1

n
∑

m=−n

[

ai,mnN
(3)
mn(r− ri) + bi,mnM

(3)
mn(r− ri)

]

, (38)
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E
(int)
i (r) =

∞
∑

n=1

n
∑

m=−n

[

ci,mnN
(1)
mn(r− ri) + di,mnM

(1)
mn(r− ri)

]

, (39)

where ai,mn, bi,mn, ci,mn and di,mn are the unknown coefficients, and the ar-
guments r − ri in the right-hand sides of (38) and (39) reflect the fact that
the corresponding spherical harmonics must be calculated in the system of co-

ordinates with the origin at ri; at the same time the functions M
(k)
mn(r) and

N
(k)
mn(r) are universal and independent of the origin. Note that the internal

field expansion contains only the spherical Bessel functions of the first kind,
jn, (k = 1) that are finite at r = 0, while the scattered field expansion con-

tains only the spherical Hankel functions of the first kind, h
(1)
n (k = 3) that

have the form of outgoing waves. Expressions for the scattered and internal
magnetic field can be obtained by taking a curl of (38) and (39) according to
H = ik−1curlE.

The incident wave is usually supposed to be linearly polarized along the
x-axis and propagating in the z direction. Then the expansion for Einc(r) =
E0 exp(ik · r) takes the form:80

Einc(r) = exp(ik · ri)
∞
∑

n=1

−in+1|E0|(2n+ 1)

2n(n+ 1)

[

M
(1)
1n (r− ri)−

M
(1)
−1n(r− ri) + N

(1)
1n (r− ri) + N

(1)
−1n(r− ri)

]

. (40)

The expression in the right-hand side of (40) does not actually depend on
ri, but provides an expansion in terms of harmonics centered in the point
ri. Note that not all possible spherical harmonics are present in expansion
(40). It contains only harmonics with m = ±1, which is a general property
of monochromatic waves. For the scattering problem involving one sphere,
only the types of harmonics present in (40) can be excited. However, for the
problem involving several spheres, this is not the case, because the secondary
scattered waves contain the spherical harmonics of all possible kinds. Again,
an expansion for the magnetic field can be obtained by taking a curl of equation
(40)

The most challenging task in the coupled multipole method is to expand
the spherical harmonics centered around the ith monomer in terms the spher-
ical harmonics centered around the jth monomer. The above procedure is
necessary for the boundary conditions consideration, because the field in each
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spherical region must be represented only in terms of spherical harmonics cen-
tered in the origin of this region. In general, it is possible to write76

M(3)
mn(r− ri) =

∞
∑

n′=1

m′=n′
∑

m′=−n′

[

Am′n′

mn (ri − rj)M
(1)
m′n′(r− rj)+

Bm′n′

mn (ri − rj)N
(1)
m′n′(r− rj)

]

. (41)

An analogous expansion can be written for the outgoing harmonic M
(3)
mn(r−ri);

it has exactly the same form as (41), but coefficients Am′n′

mn and Bm′n′

mn change
places. Although the above procedure is simple and physically transparent, the
coefficients Am′n′

mn and Bm′n′

mn are rather complicated functions of the Clebsch-
Gordan coefficients and involve integrals of the Legendre polynomials that
cannot be calculated analytically in the general case. We will not adduce them
here due to their complexity; the readers interested in numerical implementa-
tion of the coupled multipole method can find the necessary coefficients in the
original papers by Fuller76,77 and Xu.78

For each surface of discontinuity, and for each mode defined by the pair
of indices (mn), there are four unknown coefficients, ai,mn, bi,mn, ci,mn and
di,mn. Correspondingly, there are four boundary condition equations for the
tangential components of the electric and magnetic fields. Note that the inter-
nal field in each monomer is given only by expansion (39), while the external
field is given by a sum of the incident wave expansion (40) and the sum of all
secondary scattered waves (39), where the outgoing spherical harmonics are
expanded according to (41). Application of the boundary conditions leads to
the following system of linear equations76 for the scattering coefficients ai,mn

and bı,mn:

ai,mn = a
(0)
i,mn



pi,mn +
∑

j 6=i,m′n′

Am′n′

mn (ri − rj)aj,m′n′ +Bm′n′

mn (ri − rj)bj,m′n′



 ,

(42)

bi,mn = b
(0)
i,mn



qi,mn +
∑

j 6=i,m′n′

Bm′n′

mn (ri − rj)aj,m′n′ +Am′n′

mn (ri − rj)bj,m′n′



 ,

(43)
where pi,mn and qi,mn are both proportional to the exponential factor exp(ik ·
ri)).
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The coupled multipole equation (42),(43) is infinite-dimensional, as the
order n can be arbitrary large. Physically, it is usually possible to introduce a
reasonable cut-off for n. It was shown on the example of a rigorous solution for
two touching spheres that such a cut-off can be related to nonlocality effects in
the dielectric function, such as a finite wavelength of an electron in a medium.
This provides that the harmonics with characteristic features smaller than the
electron wavelength cannot be effectively excited. If we denote the cut-off
for n as nmax, the total number of the coupled multipole equations becomes
Nnmax(4nmax + 5)(nmax + 1)/6 ∼ 2Nn3

max.

The above fact makes practical application of the coupled multipole method
for any system with a reasonably large number of monomers, when the fractal
geometry is well manifested, an extremely difficult task. Taking into account
that the number of operations necessary to solve a system of L linear equa-
tions scales as L3 for direct methods and as L2 for most iterative methods,
the dependence of the computer time on the maximum order nmax is given by
n6
max in the most favorable case. Apart from this fact, calculation of the coef-

ficients in equations (42),(43) is a separate computational problem and must
be carried out for each wavelength.

When comparing the coupled dipoles and the coupled multipoles methods,
we must take into account the following factors. The coupled dipoles formal-
ism treats inaccurately only the interactions between those monomers that are
closer to each other than approximately two respective diameters. Thus, most
pair interactions in a large cluster are described by the CDE satisfactorily. The
model cluster with overlapping neighboring spherules introduced in Section
2.1.1 makes a reasonable correction to the dipole interaction while preserving
the geometrical structure, size and total volume of a cluster. The coupled
dipole model is very simple from both the theoretical and the computational
points of view, with the number of equations scaling as N . In the coupled
multipoles model, the number of equations scales as Nn3

max, and it is usually
not clear a priori, how large the cut-off value, nmax should be. It was shown75

that infinite orders of n are required for the case of two touching spheres, un-
less nonlocality of the dielectric function is taken into account. However, most
calculations based on the coupled multipoles method stop at some relatively
small orders of n, or involve a relatively small number of spheres. Nevertheless,
the coupled multipoles method is very important as an independent rigorous
verification of the coupled dipole method and yields some effects that cannot
be described in the dipole approximation.
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2.3 Iterative and renormalization methods

A number of methods based on the real space renormalization group81,82 has
been proposed for calculating the optical responses of fractal structures83,84

and conductivity of percolation two-component composites.85

In the most pure form, the renormalization methods can be applied to
geometrical clusters that are mathematically self-similar (unlike the random
clusters which are self-similar only in the statistical sense). The geometri-
cal clusters are usually built with the use of a certain “generator” which is
replicated at each step to form a larger cluster, which, in turn, is used as a
generator for the next step, and so on.83 The main idea of the method is to
assume that, at each stage, the structure used as a unit for the next stage can
be replaced by an equivalent sphere with some polarizability which depends on
the unit polarizability at the previous stage and on the geometry. This leads
to a recursion relation for the polarizability, or any other optical characteristic,
of the generated cluster.

The method of renormalization was successfully applied not only to geo-
metrical clusters, but also to disordered (percolation) systems.84

3 Numerical methods

In this Section we discuss only the numerical methods that can be applied
within the coupled dipoles approximation. The numerical implementations of
the coupled multipoles and other methods are too vast and diverse and cannot
be reviewed here due to the limited volume of this chapter. On the other
hand, the coupled dipoles method is most practical when one is interested in
the influence of the large scale geometrical structure of a cluster on its optical
properties, because the dipole approximation becomes accurate for monomers
separated by a distance larger than their size.

3.1 The quasistatic approximation

3.1.1 Jacobi Diagonalization

In the quasistatic approximation, one of the most powerful numerical ap-
proaches is diagonalization of the Hermitian matrix W(0). This can be done by
the standard Jacoby method which proved to be very accurate and robust for
clusters with the number of monomers up to N = 1, 000. The diagonalization
needs to be done only once for each cluster.

In the strong form of the quasistatic approximation, one can be interested
in the spectral dependence of the extinction (or, equivalently, the absorption)
cross section. The latter can be calculated with the use of (27) for each λ (or
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for each value of α) by simple summation, once the diagonalization of W(0) is
done. Note that for calculation of the cross sections, it is sufficient to store in
memory or on disk only the scalar products 〈E(0)|n(0)〉 and the corresponding
eigenvalues instead of the complete set of the eigenvectors. However, in this
case the cross sections can be found only for a specific polarization of the
incident light, defined by 〈iα|E(0)〉 = E0α. A more general approach is to

define three vectors |E(0)
x 〉, |E(0)

y 〉 and |E(0)
z 〉, for the x, y or z polarization of

the incident light, respectively, and to store the scalar products of these vectors
and |n(0)〉 for each n. Then the extinction cross section for the cluster under
consideration can be easily calculated for any polarization of the incident light
(including elliptical polarization) and any value of α by summation according

to (27). We emphasize that the set of values w
(0)
n and 〈E(0)

α |n(0)〉, for α = x, y, z
and n = 1, ..., 3N can be easily stored on disk for consequent calculations.

In the weak form of the quasistatic approximation, we must use formulas
(32) and (33) for the optical cross sections. Therefore, in addition to the above
values, one needs to store the value of |Dn|2 for each eigenmode. As follows
from (30), Dn is also α-independent. Further, in most random systems there
are no antisymmetrical eigenstates, such that |〈E(0)|n(0)〉| ¿ |E0|. Then it is
possible to replace |E〉 in (32),(33) by |E(0)〉. If an antisymmetrical eigenstate
exists, one must take into account the second term in expansion (31) which
is, actually, λ-dependent. However, this dependence is trivial (∼ 1/λ) and the
scalar product 〈E|n(0)〉 can be easily calculated for any λ if it is known for a
certain value λ0 (note that the propagation direction of the incident wave must
be specified in this case).

If, however, one is interested in the local fields or dipole moments rather
than in the integral cross sections (this is important when nonlinear optical
responses must be calculated), the complete set of eigenvectors of W(0) must
be stored. For example, the set of eigenvectors for N = 1, 000 would require
36Mb of storage. If the disk space is limited, the physical value in question
can be calculated by the same program, while the eigenvectors are still in the
computer memory. The disadvantage of this approach is that after the program
is terminated, an important information contained in the eigenvectors is lost
and should a need to find another independent physical value arise, the time
extensive part of the calculations would have to be repeated.

3.1.2 Lanczos Algorithm

When the dimensionality of the system, L = 3N , is very large, the complete
diagonalization of W(0) carries excessive information and is not necessary. In-
deed, as was discussed in Section 2.1.4, the Gershgorin bounds for the eigen-
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values do not depend in the quasistatic limit on the number of monomers, N .
This means that the number of resonance eigenvalues that lie inside the ho-

mogeneous width Γ = |Im(1/α)|, such that |Re(1/α)−w(0)
n | < Γ (see equation

(27)), grows approximately proportionally to N . Therefore, if one is interested
only in integral cross sections rather than in the distribution of local fields,
it is sufficient to sample only such number of eigenstates that the density of

eigenvalues in the interval (w
(0)
min, w

(0)
max) becomes larger than 1/Γ. A method

based on this observation was proposed.68 For simplicity, we discuss below the
strong form of the quasistatic approximation.

As follows from (18),(28), the extinction and absorption cross sections in
the strong form of the quasistatic approximation are given by an average of
the form 〈E(0)|[1/α −W(0)]−1|E(0)〉. (The matrix [1/α −W(0)]−1 is given by

the expansion
∑

n |n(0)〉〈n(0)|[1/α − w(0)
n ]−1.) It was shown86 that the above

average can be written as a continued fraction that formally terminates after
L levels:

〈E(0)|[1/α−W(0)]−1|E0)〉 = N |E0|2

1/α− η0 − β2
1

1/α−η1−
β2
2

1/α−η2...

. (44)

The η’s and β’s are determined by the basic Lanczos recursion relation:87

W|ui〉 = βi|ui−1〉+ ηi|ui〉+ βi+1|ui+1〉 , (45)

where β0 = 0, |u−1〉 = |uL+1〉 = 0, |u0〉 = |E(0)〉 and β’s are calculated from the
condition that the vectors |ui〉 are orthonormal. For approximate calculations,
the fraction is terminated after n steps, where n¿ L, and the last fraction in
the sequence has the form

. . .
β2
n−1

1/α− ηn−1 − β2
ng(α)

, (46)

where the terminator g(α) is taken as the Green’s function for a constant
chain86 of vectors |ui〉:

g(α) =
1/α− a−

√

(1/α− a)2 − 4b2

2b2
; (47)

a = (w(0)
max + w

(0)
min)/2 ; a = (w(0)

max − w
(0)
min)/4 (48)

and the minimum and maximum eigenvalues, w
(0)
min and w

(0)
max, can be easily

determined by diagonalizing the n× n symmetric tridiagonal matrix made up
of the η’s on the diagonal and the β’s on the first off diagonal.
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The computationally intensive part of this calculation is the matrix vector
multiplication, performed at each level. Therefore the total number of op-
erations required is ∼ L2n where n is the number of levels in the continuous
fraction (44). The number of iterations required for convergence is proportional
to 1/Γ, which seems to be the common property of many iterative methods
applied to the CDE.

3.2 Beyond the quasistatic approximation

Beyond the quasistatic limit, the diagonalization of the interaction matrix
is computationally inefficient because its eigenvalues and eigenvectors depend
explicitly of λ. Therefore, the computationally intensive part must be repeated
for any new wavelength. On the other hand, inversion of matrix is a somewhat
simpler task than resolving the eigenproblem. Below, we review a direct and an
iterative method for inversion of the complex symmetrical matrix that proved
to be robust and efficient for the solution of the CDE.

3.2.1 Method of the Square Root

An excellent direct method for inversion of a complex symmetrical matrix is
the LU expansion, known also as the method of the square root. We summarize
it briefly below.

Consider an L×L symmetrical matrix A = {aij} with complex elementsb.
It is always possible to represent this matrix as a product of a lower and upper
triangular matrices (hence, the term LU expansion) as A = T′T, where tij = 0
if j > i, and prime denotes transposition. An iterative relation for the elements
tij , j ≤ i can be easily derived from the equation

aij =

max(i,j)
∑

k=1

tiktjk . (49)

Starting with
t11 =

√
a11 ; ti1 = ai1t

−1
11 for i > 1 , (50)

and using the recursion

tjj =

√

√

√

√ajj −
j−1
∑

k=1

t2jk ; tij =

[

aij −
j−1
∑

k=1

tiktjk

]

t−1
jj for i > j , (51)

bIn our case, A = 1/α−W and L = 3N .
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one can find all the elements tij in approximately L3/6 floating-point opera-
tions. There is also L calculations of a square root involved, but this number
is insignificant. Note also that all the elements tjj are not equal to zero if the
determinant of A is not equal to zero. The first step in the iterative process
(50),(51) is also always possible because a11 = 1/α and, consequently, t11 6= 0.

Once the elements tij are found, the equation T′T|x〉 = |b〉 can be easily
solved in two steps. First, we denote |y〉 ≡ T|x〉 and solve T′|y〉 = |b〉 for |y〉
in L2 steps (this can be easily done because the matrix T′ is triangular with
all the elements above the main diagonal equal to zero). Second, the equation
T|x〉 = |y〉 is solved for |x〉 in exactly the same way.

Because the method of the square root utilizes effectively the symmetry
of A, it is approximately 6 times faster than the standard Gaussian method
or any other direct method with ≈ L3 operations. It is also important that
the matrices A and T can be stored in the same array, which allows to reduce
memory equirements.

3.2.2 Conjugate Gradient Method

The conjugate gradient method was applied by Draine61 in the Purcell-Penny-
packer model for interstellar graphite grains and later by Draine and Flatau.88

The algorithm of Draine is a special case of a more general conjugate gradient
algorithm described by Petravic and Kuo-Petravic.89 The implementation of
Draine of the conjugate gradient method proved to be very robust for the par-
ticular problem of the coupled dipoles equation, and a number of improvements
that can increase the computation speed by 2 or 3 times has been reported.90,91

The conjugate gradient method is based on minimizing the functional
F (|x〉) = ‖A|x〉 − |b〉‖, where |x〉 is the unknown vector and |b〉 is the free
term. At each step, the components of |x〉 are changed along the gradient of F
in the complex L-dimensional space. Unlike some simpler methods based on
the fastest descent in the L-dimensional space, the conjugate gradient method
always formally converges to the exact solution after L steps; however, it can
accurately approximate the solution much earlier. Similar to most other iter-
ative methods, the convergence of the conjugate gradient method depends on
the spectral range of the interaction matrix, wmax − wmin, and the quality of
resonance of an isolated particle, 1/Γ. The general rule is that the number
of iterations must be not smaller thanc (wmax − wmin)/Γ. While the value of
Γ = |Im(1/α)| depends only on the material properties, (wmax − wmin)/Γ is

cThe convergence can be much faster in the cases with special symmetry, when many
eigenvectors of A are orthogonal to |b〉. If |b〉 coincides with one of the eigenvectors, the
convergence takes place in just one iteration.
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defined by the geometry. Typically, the latter value is larger in more dense
structures with higher fractal dimension.

The basic conjugate-gradient algorithm was described in detail by Draine.61

To find a solution to the equation A|x〉 = |b〉, we start with an initial guess
|x0〉 and make the following initial settings:

|z〉 = A†|b〉 , (52)

|p0〉 = |g0〉 = |z〉 −A†A|x0〉 , (53)

|w0〉 = A|x0〉 , (54)

|v0〉 = A|p0〉 , (55)

where † denotes Hermitian conjugation. Then, starting with i = 0, the conse-
quitive orders of approximation are calculated according to

αi = 〈gi|gi〉/〈vi|vi〉 , (56)

|xi+1〉 = |xi〉+ αi|pi〉 , (57)

|wi+1〉 = |wi〉+ αi|vi〉 , (58)

|gi+1〉 = |z〉 −A†|wi+1〉 , (59)

βi = 〈gi+1|gi+1〉/〈gi|gi〉 , (60)

|pi+1〉 = |gi+1〉+ βi|pi〉 , (61)

|vi+1〉 = A|gi+1〉+ βi|vi〉 . (62)

The choice of the initial guess is important for the convergence. One possibility
is to use the first Born approximation as the initial guess. If the calculation is
repeated for a sequence of λ’s, the result of the previous calculation can be used
as the initial guess for the next one. This technique can effectively increase
the number of points in λ calculated in a given time. To further improve the
convergence, a correction to the initial guess can be made to account for a
change in λ. For example, a solution |d1〉 corresponding to λ = λ1 is used as
an initial guess for the calculation with λ = λ2. The corrected components of
the initial guess can be found according to 〈iα|dinitial2 〉 = 〈iα|d1〉 exp[i(λ1/λ2−
1)k1 · ri].

In some cases the convergence of integral characteristics, such as the opti-
cal cross sections, is an insufficient indication of reaching a good approximation
to the solution. The discrepancy of the equation must be controlled indepen-
dently. The functional F (|d〉)/〈E|E〉 can serve as a convenient measure of the
discrepancy and should be compared to unity. We’ll see below on the example
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of a calculation which uses the solution for a slightly different λ as the initial
guess that the convergence of the cross sections can be reached significantly
earlier than the discrepancy becomes much smaller than unity.

4 Linear Optical Properties

Below we illustrate the theoretical and computational approaches discussed in
the previous sections by some numerical examples.

4.1 Calculations in the Quasistatic Limit

We start with the coupled dipoles calculations of linear optical characteristics
in the quasistatic limit. First, we introduce some useful variables. The spectral

variable is defined as −Re(1/α). In the vicinity of an isolated resonance the
polarizability α can be written as

α =
R3
mωm

(ω − ω0)− iγ
, (63)

where ω0 is the resonance frequency and γ is the spectral width of the reso-
nance. The quantity Γ introduced above is related to γ by Γ = (γ/ωm)R−3

m .
As follows from (63), the spectral variable is expressed as −Re(1/α) = (ω −
ω0)/ωmR

3
m and is proportional to the detuning from the resonance. The in-

troduced spectral variable provides a convenient way to describe the system in
the most general terms, without specifying the material properties.

All the clusters used in our calculations were built on a simple cubic lattice
with a unit step. This means that the physical quantities of the dimensionality
of length, such as Rm, are measured in lattice units. In particular, this concerns

the polarizability α and the eigenvalues w
(0)
n . In fact, we will use below the

dimensionless values a3/α and a3w
(0)
n , where the lattice unit a is set to unity.

We also introduce the average polarizability of a cluster as a whole, χ,
according to χ = 〈E(0)|[1/α −W(0)]−1|E(0)〉. The extinction cross section is
given by σe = (4πk/|E0|2)Imχ according to (18) and (19).

In Fig. 1 we show the results of the quasistatic calculations for the value
Imχ as a function of the spectral variable −Re(1/α). The calculation was per-
formed for several ensembles of 3-dimensional cluster-cluster aggregates with
D ≈ 1.78. Calculations for the first two ensembles that contained random
clusters with N = 500 and N = 1, 000, respectively, were done using the com-
plete Jacoby diagonalization of W(0) and subsequent use of formula (27). The
homogeneous width Γ was set to 0.1 in these calculations. As one can see from

the figure, the value (w
(0)
max − w(0)

min)/Γ was approximately equal to 120. The
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Figure 1: The spectral dependence of the imaginary part of the average cluster polarizability,
χ, as a function of the spectral variable −Re(1/α) for random cluster-cluster aggregates
(CCA’s) with different number of monomers, N . The curves for N = 500 and N = 1, 000
are calculated using the Jacobi diagonalization and the curve for N = 10, 000 - using the
iterative algorithm based on the Lanczos recursion (Section 3.1.2).

total number of eigenstates in the case of N = 1, 000 was equal to 3, 000 and
far exceeded the above value.

The third curve in Fig. 1 was calculated using the iterative method based
on the Lanczos recursion (Section 3.1.2) for an ensemble of clusters with
N = 10, 000. The value of Γ was set in this calculation to 0.2, and the number

of iterations was equal to ≈ 100. We can estimate that (w
(0)
max−w(0)

min)/Γ ≈ 60
in this case, which is not much less than the number of iterations, but a very
good agreement between the exact and approximate calculations is achieved.
Moreover, the Lanczos calculations are free of the random fluctuations seen in
the first two curves, which might appear due to insufficient statistical averag-
ing. We can also conclude that in the quasistatic approximation the spectrum
does not depend on the number of particles in a cluster, as long as it is large
enough. This can be not so if the complete interaction operator (5)-(7) is used
instead of the quasistatic one.

In Fig. 2 we compare the spectra of the imaginary part of the average po-
larizability, Imχ, and the density of eigenvalues, ν, calculated as the number
of eigenvalues in a unit interval, for cluster-cluster aggregates and for nonfrac-
tal random close-packed clusters. The nonfractal clusters were obtained by
randomly placing little hard spheres (one after another) in a spherical volume
until there was no more available space. This procedure allowed to achieve a
fairly high filled volume fraction of ≈ 0.44 (compare to ≈ 0.52 for close-packed
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(a)

(b)

Figure 2: Spectral dependence of the imaginary part of the average cluster polarizability,
χ, as a function of the spectral variable −Re(1/α) compared to the density of eigenvalues,

ν = ν
(

w(0) = −Re(1/α)
)

. (a): random cluster-cluster aggregate (CCA’s); (b): close-packed

sphere of particles (CPSP). Calculations are done by the Jacoby diagonalization.
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Figure 3: Local field enhancement factor, G = |Ei|2/|E0|2, as a function of the wavelength
for different types of clusters built from silver monomers. CCA - cluster-cluster aggregates
(D ≈ 1.78); CPSP - close-packed sphere of particles (D = 3); RGP - random gas of particles
(D = 3). Calculations are done by the Jacoby diagonalization.

spheres on a cubic lattice). The main conclusion that can be made from com-
parison of Figs. 2a and 2b is that in the case of fractal clusters the width of the
absorption spectrum is approximately equal to the spectral width of the inter-

action matrix, w
(0)
max − w(0)

min, while for the trivial clusters it is much smaller.
Physically, this means that selection rules play a more important role in trivial
clusters than in fractal ones. While in fractal clusters all eigenmodes can be
effectively excited by resonance radiation, in trivial clusters the selection rules
suppress excitation of all eigenmodes except for the ones with the resonance
frequency close to the resonance frequency of an isolated monomer, ω0.

In Fig. 3 we plot the local field enhancement factor, G = |Ei|2/|E0|2, as
a function of the wavelength for different types of clusters built from silver
monomers. Here Ei is the local field at the ith site in a cluster, and the
horizontal line denotes statistical averaging. In this calculation, we used ex-
perimental optical constants for silver92 to calculate the polarizability α(λ)
with the use of (15),(16) as discussed in Section 2.1.1. Note that the value
of Rm in (15),(16) was chosen from a3 = (4π/3)R3

m, and the lattice step, a,
was set to 8nm. Three different types of clusters are compared. The first type
is the cluster-cluster aggregates (CCA). The second type is the non-fractal
close-packed sphere of particles (CPSP) described above. And the third type
is also nonfractal random gas of particles (RGP) distributed randomly in a
volume that would be occupied by a CCA cluster with the same number of
monomers. In all cases, monomers were allowed to approach each other no
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closer than the lattice unit, a. Thus, the CPSP’s and the RGP’s differ only in
the occupied volume fraction. In the CPSP model, monomers are randomly
placed in a fixed spherical volume until there is some space available, which
leads asymptotically to a constant occupied volume fraction, independent of
the number of monomers. In the RGP model, the fraction decreases with N
and is asymptotically zero.

Fig. 3 demonstrates that the fluctuative nature of fractals results in very
strong fluctuations of the local fields. The fluctuations increase towards the
infrared. This occurs because both the localization of fractal eigenmodes and
their quality factor increase in the long-wavelength part of the spectrum.68

This fact is especially important in nonlinear optics where the fluctuations of
the local field can play the prevailing role.19,93

4.2 Conjugate Gradient Calculations

Now, we turn to the calculations beyond the quasistatic limit. Below, we il-
lustrate the conjugate gradient method described in Section 3.2.2. The calcu-
lations are performed for a quasi 2-dimensional cluster-cluster aggregate built
form 10, 000 monomers. The original 3-dimensional CCA was dropped on
a plain surface and collapsed so that there is no empty spaces beneath the
monomers. This model is relevant to the near-field scanning optical microscopy
of fractals.48 For convenience, we consider a reference frame in which the above
surface coincides with the xy-plane, and the z-axis is perpendicular to it. The
resultant cluster is not spherically symmetrical, so that one anticipates that
its spectrum can depend not only on the polarization of the incident light, but
also on its direction of propagation. Note that the last effect is not present in
the quasistatic approximation. The cluster is built from silver monomers of
the radius Rm = 5nm and the lattice step is a = 8nm (which provides that
a/Rm ≈ (4π/3)1/3). Again, the experimental optical constants of silver92 were
used to calculate α(λ).

In Fig. 4 we illustrate the convergence of the conjugate gradient method
for different values of λ. In this particular calculation, the incident light
propagated in the z-direction and was polarized in the x-direction. For λ =
420, 520, 620nm and 720nm, the first Born approximation was used as an initial
guess. For λ = 800nm, the initial guess was calculated on an earlier stage using
λ = 780nm. For each λ, the iterations were terminated when the discrepancy
of the equation became smaller than 2 · 10−3. It can be easily seen from Fig. 4
that the convergence of the method becomes slower for larger λ’s. This is
explained by the fact that the resonance quality factor of silver nanoparticles
increases towards the infrared. When the result of a preceding calculation is
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Figure 4: Convergence of the conjugate gradient method for different values of λ

used as an initial guess, the convergence is, apparently, much faster. However,
an independent control of the discrepancy is always required. The calculations
showed that while the convergence of the integral cross sections was already
achieved, the distribution of local fields was still calculated not accurately
enough, and, correspondingly, the discrepancy was large.

In Fig. 5 we plot the spectral dependence of the extinction, absorption and
scattering efficiencies, defined as Q = σ/πR2

mN for the cluster described above
and for different polarizations and propagation directions of the incident wave.
The most characteristic feature of these spectra is the broad long-wavelength
wing. An isolated monomer has a resonance peak located near λ = 400nm with
the halfwidth of approximately 50nm. As was discussed in Section 4.1, the ex-
ternal radiation at a certain frequency ω 6= ω0 can resonancely excite different
fractal eigenmodes, while in trivial structures such excitation is prohibited by
the selection rules, unless ω ≈ ω0 (here ω0 is the resonance frequency of an
isolated monomer). It happens so that in silver clusters many fractal eigen-
modes can be excited in the red and near infrared regions. This fact explains
the existence of the long-wavelength tails in the spectra in Fig. 5. In the short-
wavelength region (λ < 300nm), the nonresonance (bulk) absorption of silver
becomes prevailing, and the fractal modes are not excited.

Another characteristic feature is the dependence of the spectra on the po-
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Figure 5: Extinction, absorption and scattering efficiencies as functions of the wavelength
calculated by the conjugate gradient method for different polarizations and propagation
directions of the incident light. (a) Propagation - x, polarization - z; (b) Propagation - z,
polarization - x; (c) Propagation - y, polarization - x.
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Figure 6: Enhancement factor for the degenerate four wave mixing, GFWM as a function
of λ for random 3-dimensional cluster cluster aggregates. The calculation was done in the
quasistatic limit by Jacoby diagonalization.

larization and propagation direction of the incident light. Note that in Figs. 5b
and 5c the polarization of light is the same (in the surface plane), but the
propagation direction is different. The influence of the propagation direction
on the optical cross sections is apparent, although the polarization dependence
is stronger (compare Figs. 5a and 5b). Note that the dependence on the prop-
agation direction cannot be obtained within the quasistatic approximation.

5 Nonlinear Optical Properties

Calculation of local fields is very important in nonlinear optics. Direct com-
putational methods, rather than the iterative ones, are, typically, more appro-
priate for calculation of the local fields. Many iterative methods, such as the
Lanczos-based algorithm described in Section 3.1.2, do not allow calculation
of the local fields. Even if they do, as the conjugate gradient method (see Sec-
tion 3.2.2), it is very difficult to control convergence of the local field at each
point in space. Instead, some integral characteristics such as the discrepancy
or the convergence of optical cross sections are used to check the accuracy of
the obtained solutions. However, even one strong fluctuation in the local field
can give a significant input to the generated nonlinear signal.

Below we show the results of quasistatic calculations of the enhancement
factor for the degenerate four-wave mixing. This is a nonlinear optical effect
of the third order, and the enhancement factor can be defined as93
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The calculations were carried out for 3-dimensional cluster-cluster aggregates
with N = 1, 000 by the direct Jacoby diagonalization. As above, the clusters
were considered to be built from silver monomers of the radius Rm = 5nm and
the experimental optical constants of silver were used.

Because of the high order of the optical nonlinearity involved, the en-
hancement factor is extremely sensitive to fluctuations in the local field. In
the infrared region, where these fluctuations are strong due to high quality of
fractal resonances, the average enhancement can reach the enormous value of
1016 and the local enhancements can reach even much higher values.
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